Decreased blood vessel leakage can improve cancer therapy and reduce tumour spread

Published: 2016-03-23

Cancer therapy is often hampered by the accumulation of fluids in and around the tumour, which is caused by leakage from the blood vessels in the tumour. Researchers at SciLifeLab / Uppsala University now show how leakage from blood vessels is regulated. They have identified a novel mechanism whereby leakage can be suppressed to improve the result of chemotherapy and reduce the spread of tumours in mice. The results are published in Nature Communications.

When a tumour grows, new blood vessels are formed that supply the tumour with nutrients and oxygen. However, these vessels are often malfunctioning and fluids and other molecules leak out of the vessels. This results in edema in the tissues, which in turn makes it more difficult for drugs to reach into the tumour during cancer therapy. The malfunctioning vessels can also contribute to the spread of metastases from the tumour.

The leakage from the blood vessels is controlled by specific protein complexes that connect the cells in the blood vessel walls. By regulating these protein complexes, the cells are joined more or less tightly, which affects the leakage from the vessels.

Recent findings from SciLifeLab / Uppsala University show how a specific alteration of the protein complex in the vessel walls can reduce leakage, without affecting any other vessel functions.

’We have studied mice that have a mutation in a certain part of one of the proteins in the protein complex. The regular blood vessels in these mice function normally, but vessels in tumours showed less leakage, and there was a decrease in edema formation. In addition, the mutant mice responded better to treatment with chemotherapy‘, says Lena Claesson-Welsh who led the study. She is Faculty and acting Co-Director at SciLifeLab, and professor at the Department of Immunology, Genetics and Pathologyat Uppsala University.

Read the full press release at Uppsala University

Read more about Lena Claesson-Welsh’s research