SciLifeLab The Svedberg seminar series

Monday, February 2

Aleksandra Radenovic

Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Aleksandra Radenovic received her master’s degree in physics from the University of Zagreb in 1999 before joining Professor Giovanni Dietler’s Laboratory of Physics of Living Matter in 2000 at University of Lausanne. There she earned her Doctor of Sciences degree in 2003. In 2003 she was also awarded a research scholarship for young researchers from the Swiss Foundation for Scientific Research which allowed her to spend 3 years as postdoctoral fellow at the University of California, Berkeley (2004‐2007). Before joining EPFL as Assistant Professor in 2008 she spent 6 months at NIH and Janelia Farm. In 2010 she received the ERC starting grant. Her group is interested in using novel nanomaterials and single molecule experimental techniques to study fundamental questions in molecular and cell biology.

MoS2 nanopores- are 3 atoms better than one?

Atomically thin nanopore membranes are considered to be a promising approach to achieve single base resolution with the ultimate aim of rapid and cheap DNA sequencing. Recently, we made advances in using nanopore platform for its integration with 2 D materials such as graphene or MoS2. Translocation of various types of DNA exhibits a signal amplitude that is five times higher than in the case of solid-state Si3N4 membranes and a SNR of more than 10. These features are highly desirable for event detection and we take advantage of them by showing the electric-field induced unfolding of a 48 kbp long DNA molecule within the nanopore which manifests itself in the quantization of the current drop. Unlike graphene nanopores, no special surface treatment is needed to avoid strong interaction between DNA and the surface. Our results imply that MoS2 nanopore membranes can compete with graphene nanopore membranes in terms of spatial resolution and possibly better performance for transverse detection. Finally I will introduce our approach to slow down DNA translocations through MoS2 nanopore.

More information about Aleksandra Radenovics research

.

Host: Ralph Scheicher

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Ok!Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.