Molecular Basis of How Nerve Agents and anti-Alzheimer Drugs Function:
3D Structure of Acetylcholinesterase

Professor Joel L. Sussman
Department of Structural Biology and Israel Structural Proteomics Center,
Weizmann Institute of Science
Rehovot 76100 ISRAEL
Joel.Sussman@weizmann.ac.il

The synaptic enzyme acetylcholinesterase (AChE) terminates transmission at cholinergic synapses by very rapidly hydrolysing acetylcholine. Examination of the 3D structure of AChE shows that the active site is located at the bottom of a deep and narrow gorge, lined largely by aromatic residues, with its peripheral anionic site located at the top, near the entrance to of the gorge. AChE is the target of nerve agents, insecticides and therapeutic drugs, in particular the first generation of anti-Alzheimer drugs. 3D structures of AChE have been determined for the Torpedo, Electrophorus, mouse, Drosophila and human enzymes. More than a hundred crystal structures of AChEs, and inhibitor complexes have been determined. Although the 3D structure of the enzyme is remarkably conserved, subtle structural differences are seen to occur upon the binding of certain inhibitors. These changes are well correlated with molecular dynamics data, and appear to be of functional significance.

3D structure of AChE displayed as a ribbon diagram. The 14 conserved aromatic residues are shown as pink sticks and a dot surface. A model of the substrate, Acetylcholine, bound in the active site, is shown at the bottom of the active-site gorge, in ball-and-stick format.