

Towards an interpretable deep learning model of cancer cells

Avlant Nilsson

Assistant Professor, DDLS fellow SciLifeLab, Department of Cell and Molecular Biology Karolinska Institutet avlant.nilsson@ki.se

My Background



Karolinska Institutet - a medical university

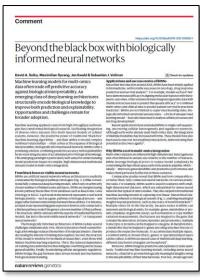
Towards AGC: an Artificial Generic Cell

Dec 2024

2025



2025

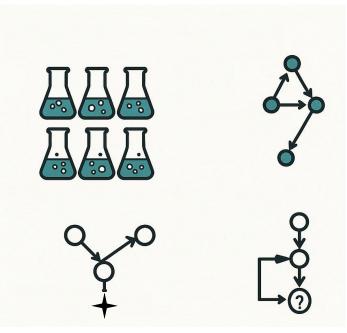


AICell Lab AlphaCell

Pre-Al

Why AGC?

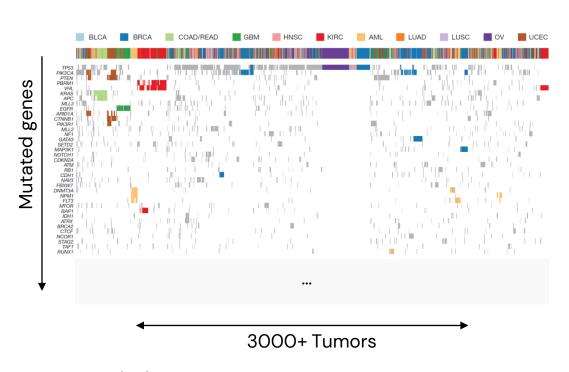
- 1) Fast experimentation
- 2) Dynamics, causal chains
- 3) Prediction



Chat-GPT generated artwork

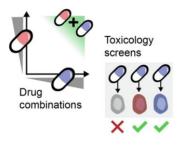
AGC = Artificial Generic Cells

Every cancer is unique



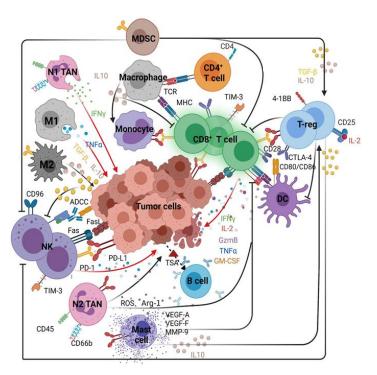
Which alterations are **driving** the cancer?

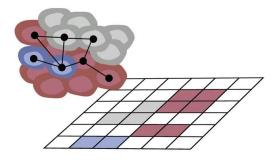
How can the cancer develop **resistance**?



Kandoth, C. et al (2013). Mutational landscape and significance across 12 major cancer types. *Nature 2013 502:7471*, 502(7471), 333–339.

Cancers interact with other cells

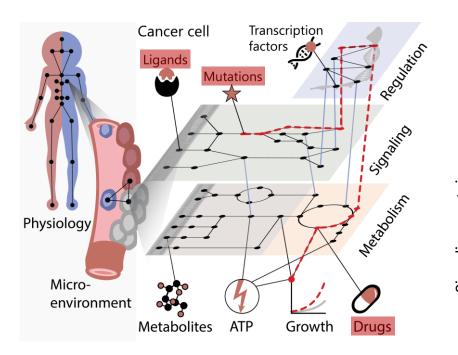




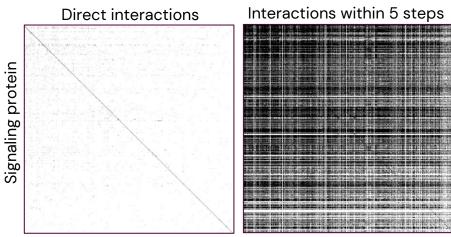
Could elucidate cell-cell interactions

Li, X. et al. Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors. Frontiers in Cell and Developmental Biology vol. 9 (2021).

Network-based approach



- Interpretable by construction
- Straight-forward mapping of data
- Reduced data requirements



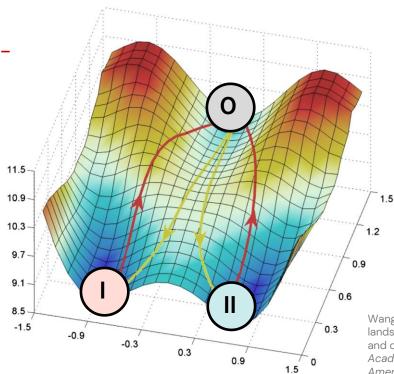
Signaling protein

1000 protein signaling network from OmniPath

Generic model: cell types/cancers are cell states

A: each cell type/cancer - one model

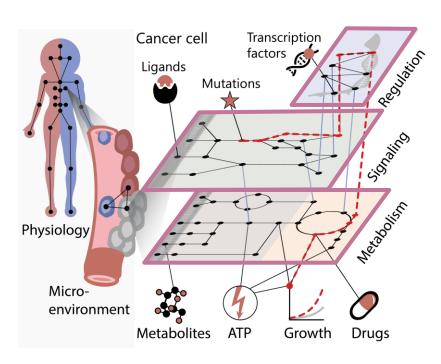
B: one model for all cells



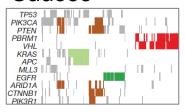
What differentiates cells is (primarily) the molecular quantitates.

Wang, J. et al (2011). Quantifying the Waddington landscape and biological paths for development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8257–8262.

Causes and effects transcend sub-networks

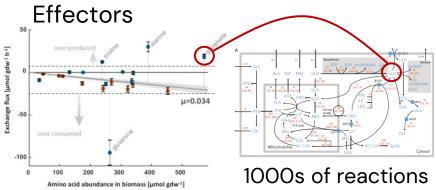


Causes



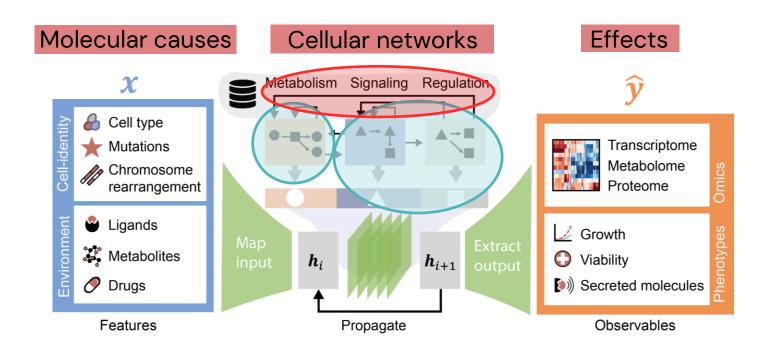
Kandoth, C. et al (2013). Mutational landscape and significance across 12 major cancer types. *Nature 2013* 502:7471, 502(7471), 333–339.

1000s of interactions



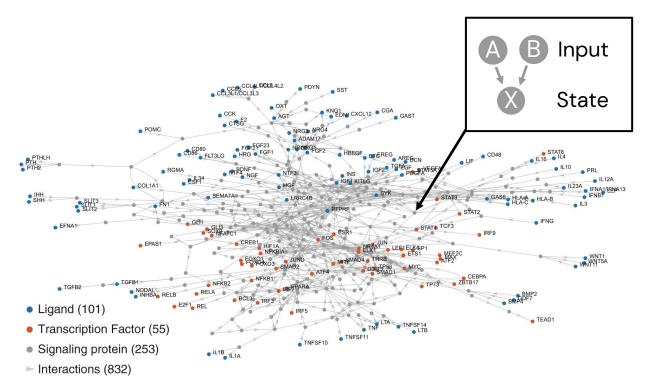
Nilsson, A. et al. "Quantitative Analysis of Amino Acid Metabolism in Liver Cancer Links Glutamate Excretion to Nucleotide Synthesis." *Proceedings of the National Academy of Sciences* 117, no. 19 (2020): 10294–304.

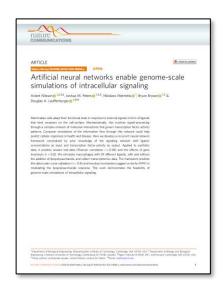
An interpretable deep learning model of the cell



Karolinska Institutet - a medical university

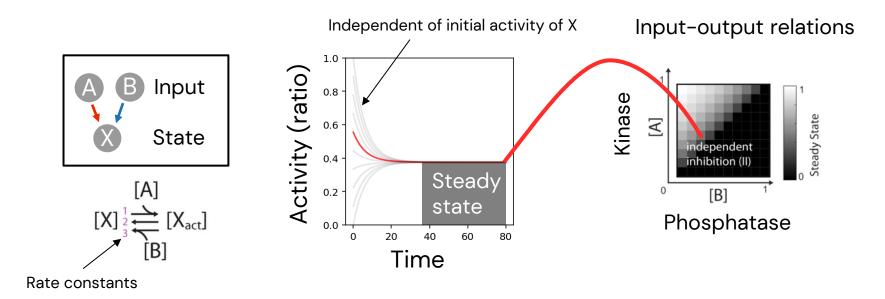
Network: effects caused by many local interactions





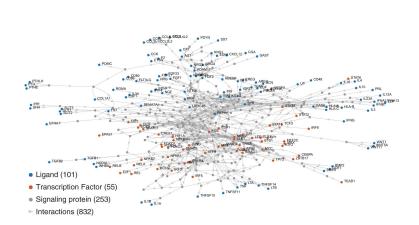
Nilsson, A, et al "Artificial Neural Networks Enable Genome-Scale Simulations of Intracellular Signaling." Nature Communications 13, no. 1 (2022): 3069.

Local steady states

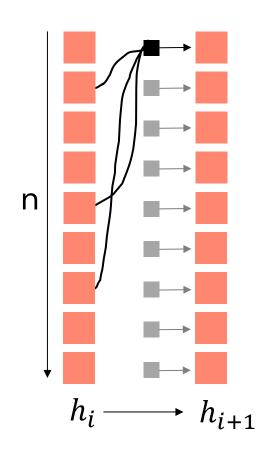


Activity of X for fixed activities of a kinase (A) and phosphatase (B)

The challenge: 1000s unique functions



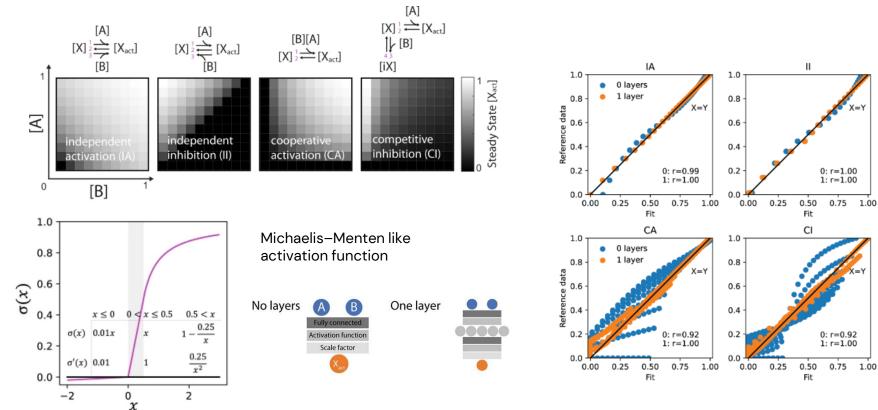
1 unique function for each signaling molecule



The functional form is mostly unknown

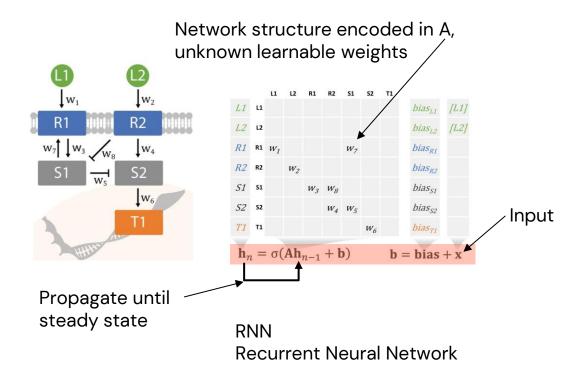
Karolinska Institutet - a medical university

Approximation of unknown functions

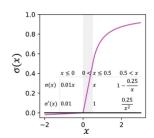


Karolinska Institutet - a medical university

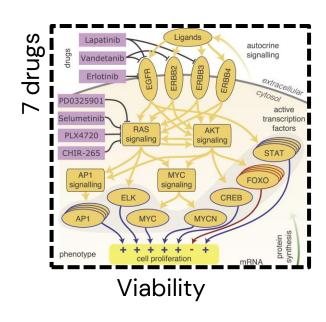
Biologically informed network, stable version

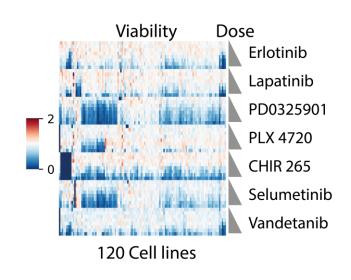


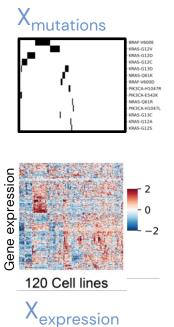
The activity of each signaling node is a weighted sum of the activities of interacting nodes, which is clipped and squashed into the range O-1



Predicting the viability effects of drugs



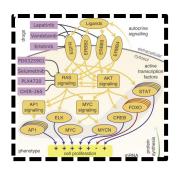




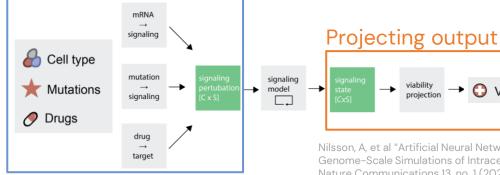
Fröhlich, F. et al. Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. *Cell Syst.* 7, 567-579.e6 (2018).

Xdrug

Predicting the viability effects of drugs



Mapping input



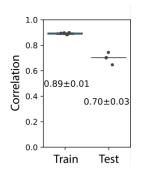
Nilsson, A. et al "Artificial Neural Networks Enable Genome-Scale Simulations of Intracellular Signaling." Nature Communications 13, no. 1 (2022): 3069.

Viability

Fröhlich, F. et al. Efficient parameter estimation enables the prediction of drug response using a mechanistic pancancer pathway model, Cell Syst. 7, 567-579.e6 (2018).

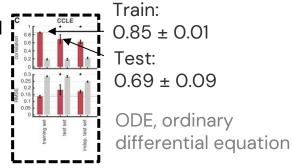
Our method

~1 hour



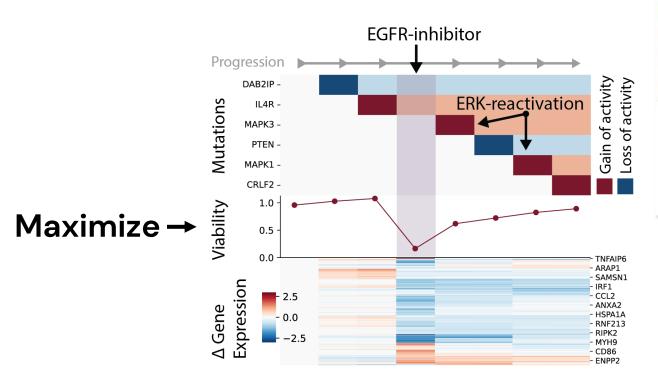
ODE-based method

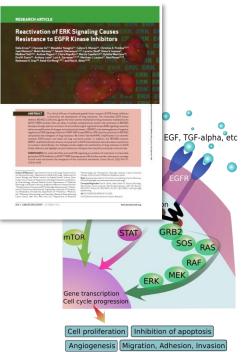
~1 week



Basic simulation of cancer evolution

Unpublished results





cancerindex.org/geneweb/EGFR.htm

Macrophage responses to ligand patterns

Bryan BrysonJacob Hochfelder
Josh Peters

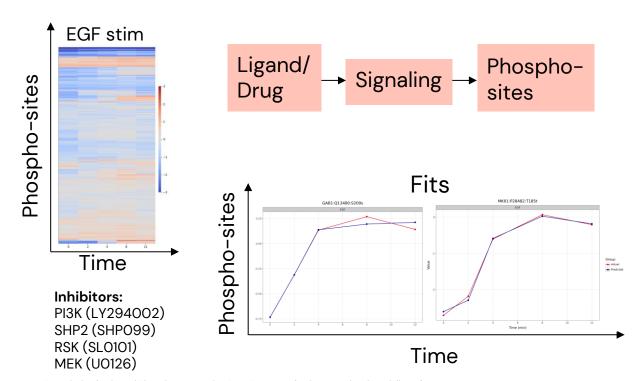
Massachusetts Institute of Technology

Sanity check: internal states

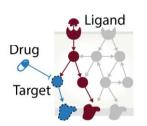
Independent validation

Applied to phospho-proteomics data

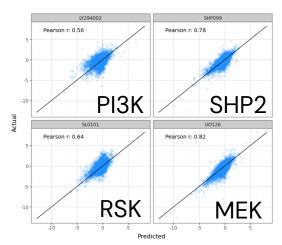
Unpublished results



O-shot learning

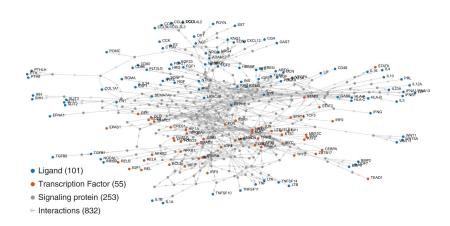


Konstantinos Antonopoulos

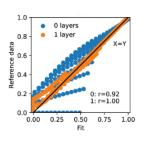


Feng, S., Sanford, et al Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. bioRxiv 2023.08.03.551714 (2023). doi:10.1101/2023.08.03.551714

How do we go deeper?



All of this was run with the weighted sum and non-linear transformation



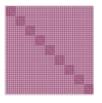
Goal:

Express 1000s of functions, with a single network

Olof Nordenstorm

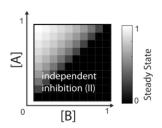
Not feasible: Loop over 1000s of unique networks

Possible: Sparse block matrix, but not GPU friendly



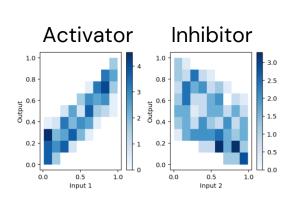
Solution: the propagator

Synthetic dataset

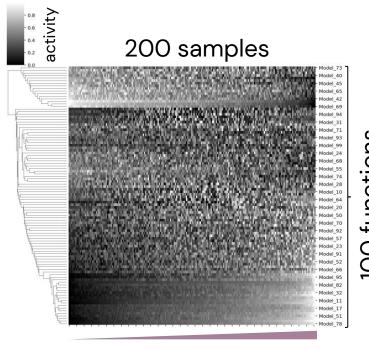


First order + several interaction terms

Up to 10

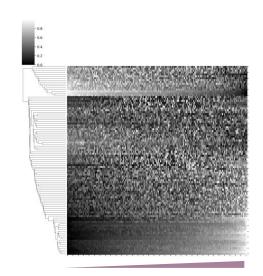


simultaneous inputs

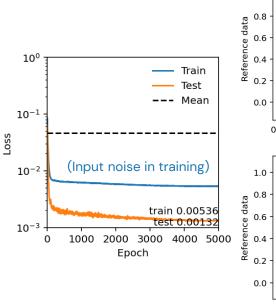


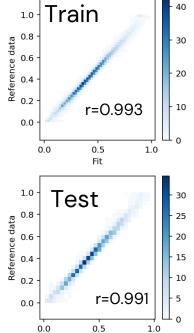
Mean input level

Results

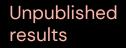


Mean input level





40



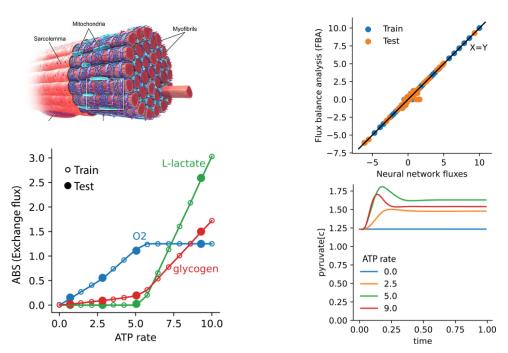
Applied to metabolism

Unpublished results

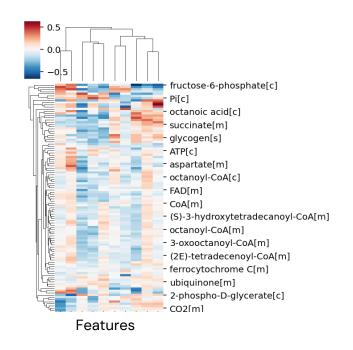
Xuechun Xu

Unpublished results

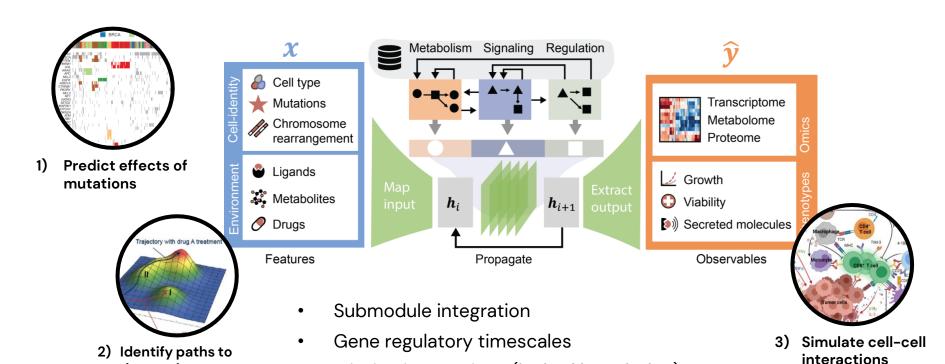
Muscle simulations



Nilsson, A., Björnson, E., Flockhart, M., Larsen, F. J. & Nielsen, J. Complex I is bypassed during high intensity exercise. *Nature Communications* **10**, 5072 (2019).



An interpretable deep learning model of the cell



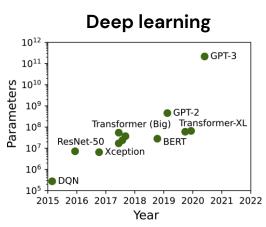
Missing interactions (lack of knowledge)

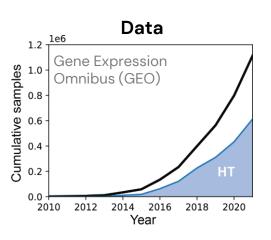
Karolinska Institutet - a medical university

drug resistance

Now is the time for an Al model of the cell







Karolinska Institutet - a medical university

Acknowledgments

CANCERFONDEN

This work was supported by the SciLifeLab & Wallenberg

Data Driven Life Science Program (grant; KAW 2020,0239)

Avlant Nilsson

Olof Nordenstorm

Xuechun Xu

Konstantinos Antonopoulos

Rickard Sandberg

Bryan Bryson

Josh Peters

Jacob Hochfelder

Janne Lehtiö

Kasper Karlsson

Thomas Helleday

Päivi Östling

Arne Lindqvist

Julio Saez-Rodriguez

Attila Gabor

Pablo Rodríguez Mier Sebastian Lobentanzer

Michael Birnbaum Caleb Perez

Jurgen Haanstra

Claus Jorgensen

Bas Teusink

The lab is growing, talk with us about future projects! avlant.nilsson@ki.se

