Call for Academic and Industrial Postdoctoral Fellowships in Data-Driven Life Science 2026 – Evaluator Guidelines

These guidelines provide a framework for evaluating DDLS Postdoc Call applications. Evaluators play a crucial role in selecting the most promising candidates who will contribute to the advancement of data-driven life sciences.

General Information

- External evaluators will be remunerated as a form of recognition and partial compensation for their work.
- Evaluators must declare any conflicts of interest.

Evaluation Constellations & Methods

Phase 1 – Written application

Each proposal is evaluated by external experts using the Anubis online system. Two experts read and score the applications individually. The scores are then harmonized at an assessment meeting where all applications are discussed. During this meeting, the experts present and argue for the applications they reviewed, and consensus scores are agreed upon. The harmonized scores are used to create separate rankings for the academic and industry tracks. The highest-ranked applications are invited to Phase 2.

Phase 2 - Interview

Top-ranked candidates from Phase 1 are invited to an online interview. Candidates are interviewed by a team consisting of external experts and a DDLS representative. While the full team participates in the interview, only the external experts assign scores. These scores are harmonized at an assessment meeting, where final scores are agreed upon for all candidates who have been interviewed.

Key Steps

- Eligibility & Completeness Check: Performed by the DDLS team.
- Conflict of Interest: Must be declared before review begins.

Scoring

Each criterion is scored on a scale of 1-7, with feedback comments required.

- 7 = Outstanding. Exceptionally strong application with negligible weaknesses
- 6 = Excellent. Very strong application with negligible weaknesses
- 5 = Very good to excellent. Very strong application with minor weaknesses
- 4 = Very good. Strong application with minor weaknesses
- 3 = Good. Some strengths, but also moderate weaknesses
- 2 = Weak. A few strengths, but also at least one major weakness or several minor weaknesses
- 1 = Poor. Very few strengths, and numerous major weaknesses

Evaluation Criteria

Written Proposal (60% of total score)

Researcher (Applicant; 40%)

- Technical competence in computational biology and/or machine learning
- Quality of research outputs (publications, datasets, software, tools, IP)
- Match between research outputs and time in science (considering non-linear paths, career breaks)
- Previous contributions to FAIR (e.g., dataset deposition, open repositories, software development, metadata standards)

Excellence (25%)

- Quality and originality of the project
- Ambition, novelty, and timeliness of the research question
- Soundness of methodology and feasibility of the work plan, including the clarity and depth of the proposed machine learning, statistical, or other data-science components that make the project genuinely data-driven in life science

Impact (20%)

- Contribution to DDLS program goals (excellence, skilled talent, long-term careers in Sweden), including advancement of data-driven life science through substantive ML/DS methodology or applications
- Potential for knowledge transfer and impact on academia, industry, and society
- Future commitments to FAIR and Open Science (e.g., dataset deposition, code release, interoperability, sustainability)
- Commitment to diversity and equality

Implementation (15%)

- Feasibility of project plan, timeline, and risk mitigation
- Suitability of the host environment and available infrastructure
- Complementarity between the applicant and the host PI
- Realism of the data-driven methods plan, including access to required data, computational resources, and expertise needed to execute the proposed ML/DS components

Interview (40% of total score)

The interview focuses primarily on the candidate, with emphasis on technical competence and commitments to FAIR and Open Science.

Researcher (Applicant; 40%)

- Technical competence in computational biology and/or machine learning
- Depth of subject-matter knowledge and problem-solving ability
- Leadership potential and independence

Quality and clarity when presenting past research

FAIR – Previous Contributions (10%)

- Candidate's demonstrated track record in applying FAIR principles to datasets, software, or tools
- Examples of prior open data/software sharing and use of standards

FAIR – Future Commitments (10%)

- The candidate's ability to articulate how FAIR principles will be embedded in the proposed fellowship
- Plans for dataset deposition, code release, metadata standards, and interoperability

Motivation & Career Development (20%)

- Motivation for applying to the DDLS Postdoc Call
- Alignment with DDLS program objectives and research track
- Long-term commitment to pursuing a career in Sweden

Communication & Presentation (20%)

- Clarity of oral communication and ability to present complex topics
- English proficiency and confidence in discussing technical and conceptual aspects

DDLS Postdoc Call – Evaluator Scoring Template

For each criterion, please provide both a score (0–5) and a short justification comment.

Weighted

Written Proposal (60% of final score)

Criterion	Weight	Score (1-7)	Score	Comments
Researcher	40%			Technical competence in computational biology/ML; quality of outputs (publications, datasets, software, tools, IP); previous FAIR contributions match to career stage; independence.
Excellence	25%			Quality, novelty, timeliness, ambition of the project; clarity of objectives; sound methodology including the strength and relevance of the propose ML/statistical components
Impact	20%			Contribution to DDLS goals; knowledge transfer potential; diversity, sustainability; future FAIR and Open Science commitments
Implementation	15%			Feasibility; infrastructure and environment; access to relevant ML/statistics expertise; realism of the data-driven methods plan; complementarity with host; risk management

Subtotal Written Proposal (max 7):

Interview (40% of final score)

		Score	Weighted	
Criterion	Weight	(1–7)	Score	Comments

Researcher 40% Technical competence in computational biology/ML; problem-solving ability; leadership potential; clarity when presenting past research

Criterion	Weight	Score (1–7)	Weighted Score	Comments
FAIR – Previous Contributions	10%			Candidate's prior activities in FAIR data/software (datasets, repositories, tools, standards)
FAIR – Future Commitments	10%			Candidate's plans for FAIR in the fellowship (data deposition, code release, metadata, interoperability)
Motivation & Career Fit	20%			Alignment with DDLS program objectives; commitment to long-term career in Sweden
Communication & Presentation	20%			Clarity of oral presentation; English proficiency; ability to explain complex topics

Subtotal Interview (max 5):

Final Score

- Written Proposal (60%):
- Interview (40%):
- Total Final Score (max 7):

Evaluator's Summary Comment: (Brief narrative justification of the overall score and recommendation)

DDLS Postdoc Call – Evaluator Guidance Notes

Evaluators are asked to use the 1–7 scoring scale consistently across all criteria. Written comments are required for each criterion to justify the score and will be communicated to applicants.

Written Proposal (60% of final score)

Researcher (Applicant; 40%)

Evaluate the candidate's track record and capabilities relative to their career stage.

- Look for evidence of technical competence in computational biology and/or machine learning.
- Consider the quality and relevance of research outputs (publications, datasets, software, tools, patents).
- Assess whether achievements are commensurate with the time in science (taking into account non-linear careers, career breaks, or time outside academia).
- FAIR contributions: assess whether the candidate has shared data or software in a manner consistent with FAIR (e.g., deposition in repositories, open-source code, metadata use, standards compliance).
- If the applicant remains in the same research group as during their PhD, evaluators should critically assess their independence. This situation is eligible but should normally result in a lower score.

Strong application: Demonstrates advanced technical skills, meaningful FAIR contributions, strong outputs for the career stage, and clear evidence of independence. Weak application: Limited technical expertise, few outputs, no evidence of FAIR contributions, or outputs not commensurate with career stage.

Excellence (25%)

Evaluate the scientific quality of the proposed project.

- Is the research question ambitious, novel, and timely?
- Are objectives clear, well-structured, and feasible?
- Is the methodology appropriate and rigorous?
- Does the project contain a substantial machine-learning or data-science component, such as model development, algorithmic innovation, or advanced statistical analysis?

Strong application: The project is original, timely, with clearly defined objectives and a strong methodology. Weak application: Project is incremental, lacks novelty, or methodology is poorly defined or not feasible.

Impact (20%)

Evaluate the broader impact of the proposal.

- Will the project contribute to DDLS program goals (excellence, talent recruitment, long-term careers in Sweden)?
- Potential for knowledge transfer or benefits to academia, industry, or society.
- Commitment to diversity, equality, and sustainability.
- Future FAIR and Open Science commitments: assess whether the project plan specifies how results, data, and code will be shared and made reusable.

Strong application: Clear career-development benefits, strong open science and FAIR plans, and relevance for both academic and societal needs. Weak application: Limited articulation of impact, vague or absent FAIR/open science plans.

Implementation (15%)

Evaluate the practical feasibility of the project.

- Is the timeline realistic, and are the risks adequately addressed?
- Does the host environment provide access to required infrastructures, data, and expertise?
- Is there strong complementarity between the applicant and the host PI?

Strong application: Coherent, well-planned, realistic project with clear mitigation strategies. Weak application: Unclear work plan, risks not adequately addressed, and a weak fit with the host environment.

Interview (40% of final score)

Researcher (Applicant; 40%)

Focus on the candidate's skills, independence, and leadership potential.

- Technical competence in computational biology and/or machine learning.
- Ability to think critically and solve problems.
- Leadership and independence (ownership of ideas, initiative).
- Clarity in presenting and defending past research.

Strong candidate: Explains research clearly, demonstrates technical depth and independence, and has strong potential as a future leader. Weak candidate: Lacks depth in answers, is unable to defend work, and has limited evidence of independence.

FAIR – Previous Contributions (10%)

- Ask about the candidate's prior experience with data/software management and sharing.
- Did they publish datasets, deposit code in repositories, or contribute to standards?

Strong candidate: Provides clear examples of FAIR-aligned contributions. Weak candidate: No evidence of prior FAIR practices.

FAIR – Future Commitments (10%)

- Evaluate how convincingly the candidate describes plans to embed FAIR principles in their proposed project.
- Look for specifics: dataset deposition, metadata standards, code sharing, interoperability.

Strong candidate: Articulates a realistic, well-informed plan for FAIR in the fellowship. Weak candidate: Provides vague statements without clear actions.

Motivation & Career Fit (20%)

- Does the candidate demonstrate motivation for joining DDLS?
- Are career goals aligned with the program objectives?
- Does the candidate express interest in a long-term career in Sweden?

Strong candidate: Clear, realistic career goals, strong fit with DDLS, and long-term vision. Weak candidate: Generic or unclear motivation, weak alignment with program goals.

Communication & Presentation (20%)

- Assess clarity, coherence, and engagement in oral presentation.
- Ability to explain complex concepts to an expert panel.
- Proficiency in English.

Strong candidate: Clear, confident, and engaging presentation. Weak candidate: Struggles to communicate research ideas, unclear or poorly structured answers.

Additional Notes

- Evaluators should apply criteria consistently and avoid unconscious bias.
- Scores should reflect the strength of the evidence presented, not assumptions about potential.
- Written comments are critical for both transparency and applicant feedback.