Key Publications

Fast and accurate database searches with MS-GF+ Percolator. V Granholm, S Kim, JCF Navarro, E Sjölund, RD Smith, L Käll. Journal of proteome research (2014), 13 (2), pp 890–897

Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. L Moruz, P Pichler, T Stranzl, K Mechtler, L Käll. Analytical chemistry (2013) 85 (16), 7777-7785

Recognizing uncertainty increases robustness and reproducibility of mass spectrometry-based protein inferences O Serang, L Moruz, MR Hoopmann, L Käll. Journal of proteome research (2012), 11 (12), 5586-5591

On using samples of known protein content to assess the statistical calibration of scores assigned to peptide-spectrum matches in shotgun proteomics. V Granholm, WS Noble, L Käll. Journal of proteome research (2011), 10 (5), 2671-2678

Training, selection, and robust calibration of retention time models for targeted proteomics. L Moruz, D Tomazela, L Käll. Journal of proteome research( 2010) 9 (10), 5209-5216

Research interests

Lukas Käll is Professor of Computational Proteomics at KTH Royal Institute of Technology, where his research focuses on developing machine learning methods to improve the analysis and interpretation of large-scale mass spectrometry–based proteomics data.

Group members

Alfred Nilsson
Fei Luo
Hilda Sköld
Yuqi Zhang

Last updated: 2025-11-12

Content Responsible: admin(website@scilifelab.se)