A novel paper by Pierre De Wit from the University of Gothenburg reveals 37 genes correlated with shell formation in the early development of Pacific oysters (Crassostrea gigas). The study, enabled by the National Genomics Infrastructure (NGI) and National Bioinformatics Infrastructure Sweden (NBIS) of SciLifeLab, utilized a RNA-Seq approach to map the process where unprotected oyster embryos start to develop shell structures.

The experiments were carried out under acidified water conditions to delay the oyster’s shell formation process. Samples for analyses were taken every two hours in order to obtain a high temporal resolution. Some of the identified genes are previously known to be involved in the development of oyster shells, but the study also presents novel gene candidates. The data suggest that the shell formation mechanism can be divided into three different main parts, namely 1) transport of ions across plasma membranes, 2) secretion of shell matrix proteins and 3) production of protease inhibitors.

This work provides a foundation for further studies on how genetic variation in the identified genes could affect the fitness of oyster populations subjected to environmental changes, such as ocean acidification.

Read the full paper in BMC Genomics

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Ok!Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.