Research Interests

The cellular membrane acts as a barrier to isolate the cell’s inside from the outside world. To communicate with its environment, the cell uses membrane proteins that facilitate the transport and permeation of otherwise impermeant species. Dysfunction of these proteins lead to diseases such as epilepsy, heart arrhythmias or paralysis. These proteins are also privileged drug targets since they are accessible from the outside of the cell.

Recent developments in structural biology have provided us with static structures of these exquisite molecular machines, yielding the first insights into how these proteins may perform their function. We provide further insight into their function and regulation by their environment by using molecular dynamics simulations, which we run on high performance computers afforded by the Swedish National Infrastructure for Computing. This allows not only to understand the complex interplay between the ion channel and its environment, particularly components of the cell membrane but also to delve into the details of how these molecular machines harness energy and perform their role at the atomistic level.

We collaborate with groups all over the world to tackle questions of biomedical relevance in a collaborative fashion. For example, we investigate the fundamental aspects of heart channel activation with electrophysiologists from the University of Wisconsin, Madison; we understand and design novel drugs to treat epilepsy with researchers from the University of Linköping or else, we gain access to the molecular level details of G-Protein coupled receptor activation with computational chemists from the University of Uppsala. 

Recent interview

Computational biophysicist Lucie Delemotte on ion channel simulations, coronavirus and kickboxing

Group members

Principal Investigator

Lucie Delemotte

Researchers

  • Ahmad Elbahnsi
  • Sergio Pérez Conesa
  • Lea Rems

PhD Students

  • Oliver Fleetwood
  • Annie Westerlund
  • Koushik Choudhury
  • Sarah McComas

Contact

lucie.delemotte@scilifelab.se

To improve your experience with the Scilifelab website, we use cookies. To find out more, read our cookie policy.
Manage cookiesAccept
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
SAVE & ACCEPT