Gruppbild_Mats_Nilsson_2017

Research interests

Our work is focused on development of novel molecular analysis concept for use in research and diagnostics, with primary focus on infectious and cancer diagnostics. We address development of both fundamental assay architecture and novel devices. Our research is based on a cross-disciplinary approach involving extensive collaboration with scientist ranging from physics and engineering to biomedical and clinical research, and with the ultimate goal of translating the research into industrial products to make the technologies available for the scientific community and hospital labs.

A current trend in drug development is that novel therapies are more targeted to a certain molecular defect. Thus, molecular diagnostics has become a central element to be able to prescribe the right drug. Powerful research tools are not always suitable for the diagnostic setting, where tests needs to be very reliable, automated, usually relatively rapid, inexpensive, and fit the sample logistics and throughput of a typical hospital lab.

The fundament of our research is based on advanced molecular tools employing nucleic acid processing enzymes and DNA circularization reactions, as used in the padlock and selector probe technologies developed in our lab. The selector technology enables highly multiplexed targeted ultra-deep next generation sequencing suitable for diagnostics and is now commercially available as tha HaloPlex assay. Padlock probes combined with RCA provides interesting analytical advantages. First, due to the single-molecule sensitivity of these assays, they can be used for highly precise digital quantification. Second, they can be used to elicit novel magnetic or electric biosensor readouts, that can be used for hand held devices. Finally, they can be implemented in situ to detect and digitally quantify DNA and RNA sequences resolving single-nucleotide variants at micro-meter resolution, which we utilize in our in situ sequencing approach, applying next generation sequencing in situ. With this technique we can sequence DNA and RNA molecules in the preserved context of fixed cells and tissue sections and it can be applied for massively multiplexed expression profiling, splice variant mapping, and mutation detection in situ.

Group members

Sibel CiftciPhD student
Thomas HaulingResearcher
Markus HilscherPostdoc
Ivan Hernandez-NeutaPhD student
Tomasz KrzywkowskiPhD student
Malte KühnemundPostdoc
Navya LaxmanPostdoc
Elin LundinPhD student
Felix NeumannPhD student
Mats NilssonProfessor
Xiaoyan QianPhD student
Narayanan SrinivasanPostdoc
Jessica SvedlundResearcher
Carina StrellResearcher
Chenglin WuPostdoc
Di WuPostdoc

Contact

mats.nilsson@scilifelab.se

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Ok!Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.