The Helleday laboratory focuses on understanding the basic processes of DNA repair and nucleotide metabolism, translating original findings into novel treatments of cancer inflammation and virus infections. The strategy has for a long time been to have a multidisciplinary translational research group where basic scientists work alongside medicinal chemists, pharmacologists, drug developers as well as clinical trials experts. Staff working in the Helleday labs are all involved in the process from the early target discovery discussions all the way to phase II trials in patients. Our philosophy is that the people in the team is the main asset and that the input from all expertise contributes to sharpening the projects to increase the likelihood of success in our ultimate goal: to battle human diseases and improve lives.
The Helleday lab has been pioneering the DNA damage response (DDR) area over the last decades and demonstrated that homologous recombination defective cancers (HRD, e.g., BRCA mutant) are sensitive to PARP inhibitors (Bryant et al., 2005 Nature 434, 913-7), which was the first example of a synthetic lethal approach for treatment of cancer. This is rapidly becoming standard treatment for HRD positive cancer such as e.g., ovarian, breast, pancreatic, and prostate cancers. Several novel treatments are also emerging from the Helleday lab such as MTH1 inhibitors in cancer (Gad et al., 2014 Nature 508, 215-21) and OGG1 inhibitors in inflammation (Visnes et al., 2018 Science 362, 834-839) amongst others.
The Helleday lab has also been involved in pioneering several basic science discoveries such as oncogene-induced replication stress (Bartkova et al., 2006 Nature 444, 633-7) and uncovering repair and restart pathways at stalled replication forks (see for instance Sørensen et al., 2005 Nature Cell Biol 7, 195-201 or Petermann et al., 2010 Mol Cell 37, 492-502).
The research aims to i) purifying and targeting proteins in DNA repair and metabolism, ii) use probes and genetic tools to increase basic knowledge around target proteins and iii) translating basic research findings into new treatments tested in clinic
The aim of our research is to characterize the role of metabolism in genome stability and whether metabolic enzymes have functions in the cellular response to DNA damaging anti-cancer treatments. We are a creative and dedicated team with the goal translating our findings into novel treatments for cancer patients.
The aim of our research is to rationally improve the treatment of cancer. With this focus, we investigate the role of metabolic pathways inside cancer cells and their involvement in cancer biology and therapy resistance, with a particular focus upon the pathways responsible for maintaining the DNA molecule and the DNA precursor pool.
The research aims to use state-of-the-art chemical biology techniques to identify and further develop the next generation of cancer therapeutic agents. A corner-stone of this research is employing target engagement techniques to help optimize interactions between experimental drugs and their intended targets in cells and tissues. This work is done in close collaboration with the Brent Page Lab at the University of British Columbia which houses the medicinal chemistry arm of the Page research team.
Aleksandra Pettke | PhD-student |
Anna Huguet Ninou | PhD-student |
Ann-Sofie Jemth | Team leader Biochemistry |
Azita Rasti | Scientist |
Bishoy Hanna | PhD-student |
Brent Page | Team leader Page lab |
Carlos Benitez-Buelga | Postdoc |
Christina Kalderén | Scientist |
Dimitrios Chioureas | Postdoc Gustafsson lab |
Elisee Wiita | Scientist |
Evert Homan | Scientist |
Ingrid Almlöf | Scientist |
Jemina Lehto | PhD-student Gustafsson lab |
Jiantao Wang | Postdoc Rudd lab |
Kumar Sanjiv | Team leader Disease models |
Louise Sjöholm | Research Coordinator |
Mari Kullman Magnusson | Lab manager |
Marianna Tampere | PhD-student |
Marjo Puumalainen | Team leader virus |
Martin Henriksson | Scientist |
Martin Scobie | Team leader Medicinal chemistry |
Maurice Michel | Postdoc |
Nadilly Bonagas | PhD-student |
Niklas Schultz | Team leader Pharmacology |
Nina Gustafsson | Team leader Gustafsson lab |
Oliver Mortusewicz | Team leader Basic biology |
Olov Wallner | Scientist |
Petra Marttila | PhD-student |
Sanaz Attarha | Postdoc Page lab |
Sean Rudd | Team leader Rudd lab |
Simin Zhang | Postdoc Rudd lab |
Stella Karsten | PhD-student |
Teresa Sandvall | Scientist |
Therese Pham | Scientist |
Thomas Helleday | Professor, Group leader |
Tobias Koolmeister | Scientist |
Ulrika Warpman Berglund | Deputy group leader |
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.