ELIXIR Tools for Reproducible Research – ONLINE

November 15, 2021 November 19, 2021

ELIXIR Tools for Reproducible Research – ONLINE

November 15 @ 09:00 November 19 @ 14:30 CET

Elixir / NBIS course open for PhD students, postdocs, group leaders and core facility staff interested in making their computational analysis more reproducible. International applications are welcome, but we will give approximately half of the participant slots to applicants from Swedish universities at minimum, due to the national role NBIS plays in Sweden.

The course is organized by NBIS (ELIXIR-SE).

Responsible teachers: John Sundh, Erik Fasterius, Verena Kutschera

Contact information: edu.trr@nbis.se

Important dates

Application open: September 1

Application deadline: October 15

Confirmation to accepted participants: October 22

Course fee

This online training event has no fee. However, if you accept a position at the workshop and do not participate (no-show) you will be invoiced 2,000 SEK.*Please note that NBIS cannot invoice individuals

Course description

One of the key principles of proper scientific procedure is the act of repeating an experiment or analysis and being able to reach similar conclusions. Published research based on computational analysis, e.g. bioinformatics or computational biology, have often suffered from incomplete method descriptions (e.g. list of used software versions); unavailable raw data; and incomplete, undocumented and/or unavailable code. This essentially prevents any possibility of attempting to reproduce the results of such studies. The term “reproducible research” has been used to describe the idea that a scientific publication based on computational analysis should be distributed along with all the raw data and metadata used in the study, all the code and/or computational notebooks needed to produce results from the raw data, and the computational environment or a complete description thereof.

Reproducible research not only leads to proper scientific conduct but also provides other researchers the access to build upon previous work. Most importantly, the person setting up a reproducible research project will quickly realize the immediate personal benefits: an organized and structured way of working. The person that most often has to reproduce your own analysis is your future self!

Course content

In this course you will learn how to make your data analyses reproducible. In particular, you will learn:

  • good practices for data analysis
  • how to use the version control system git to track edits and collaborate on coding
  • how to use the package and environment manager Conda
  • how to use the workflow managers Snakemake and Nextflow
  • how to use R Markdown to generate automated reports
  • how to use Jupyter notebooks to document your ongoing analysis
  • how to use Docker and Singularity to distribute containerized computational environments

Entry requirements

Required for being able to follow the course and to complete computer exercises:

  • familiarity with using the terminal (e.g. be familiar with commands such as ls, cd, touch, mkdir, pwd, wget, man, etc.)
  • a computer with a webcam
  • You will be asked to install the video conferencing software zoom (https://zoom.us/) to be able to participate in the course
  • some knowledge in R and/or python is beneficial but not strictly required

Selection criteria

The course can accommodate 20 participants. Selection criteria include correct entry requirements, motivation to attend the course as well as gender and geographical balance. Academic affiliated registrants are prioritized prior to participants from the industry. 

Please note that NBIS training events do not provide any formal university credits. The training content is estimated to correspond to a certain number of credits, however the estimated credits are just guidelines. If formal credits are crucial, the student needs to confer with the home department before submitting a course application in order to establish whether the course is valid for formal credits or not.

Last updated: 2021-09-09

Content Responsible: Maria Bäckström(maria.backstrom@scilifelab.uu.se)