Bacterial ribosomes bind to mRNA on a specific binding site called ribosomal binding site (RBS). This process requires single stranded RNA since the structure of stable RNA blocks initiation. So how come stable mRNA is still translated in bacteria? To answer this, scientists from Uppsala University, among them SciLifeLab Fellow Sebastian Deindl, used an old hypothesis of a “standby” site proposed by dutch scientists almost 25 years ago.

The hypothesis suggests that the ribosome binds to an accessible, unstructured region located elsewhere, waits for a while and then moves to the ribosomal binding site when it temporarily opens up.

In the study, published in PNAS, the researchers managed to confirm the hypothesis as well as describing the anatomy of the proposed standby site. Ribosomal protein S1 plays an important role by binding directly to the standby site that consists of two elements, a single-stranded region and a short RNA loop known as a hairpin. Binding to the standby site the allows the ribosome to move downstream until it reaches the blocked RBS.

“We felt that it was time to figure out what exactly a standby site looks like, and what is needed to make it work. Standby is an old idea that up to now lacked strong direct evidence,” says Cédric Romilly, the study’s first author in a press release from Uppsala University.

By using advanced methods like fluorescence anisotropy and UV-crosslinking/RNA footprinting the researchers were able to isolate ribosomes on the standby site of a short mRNA coding for a toxin, TisB.

“This has really been a tour de force, but it is great to finally understand the anatomy of a real standby site,” says Professor E. Gerhart H. Wagner, lead author of the study.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Ok!Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.