Scientists at SciLifeLab are using robots to produce thousands of 3D microtissues, also known as cell spheroids – in tiny droplets containing a fixed number of cells – to test drug candidates or personalized drug combinations in miniaturized versions of the targeted human tissue. Microtissue testing could also reduce the need for animal testing in the future.

In a recent study, published in SLAS Technology and led by Håkan Jönsson (SciLifeLab/KTH), researchers demonstrated the automation of microfluidics workflows using laboratory liquid handling robots.

The robots are able to create large numbers of standardized cell spheroids by utilizing pipettes interfacing with droplet-generating microfluidic devices. To date, the robotic platform has demonstrated microtissue production with 15 different cell lines reaching maximum production load of 85000 spheroids per microfluidic circuit per hour.

The team is now working within a Vinnova funded project on a next-generation robotic platform, scaling up the microfluidics robot to eight times higher production capabilities, to be able to fulfill the needs of personalized medicine and pharmaceutical drug screening. The technology was also recently highlighted at meetings at the Crick Institute, London and MicroTAS Basel.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Ok!Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.